CrossDoc

Team: Octo-Docs

Team Members:
Garrison Smith
Peter Huettl
Kristopher Moore
Brian Saganey

Client/Mentor

Dr. James Palmer

(@)

Associate Professor at NAU - SICCS

Dr. John Georgas

(@)

Associate Professor at NAU - SICCS

Nakai McAddis

O

Lecturer at NAU

NORTHERN

ARIZONA @@
UNIVERSITY

The Problem

e Large companies with large projects

o Culturally diverse developers

o Language barrier
Source Code
e Software and Documentation
o Misunderstood documentation
o Comments tightly coupled
with the codebase

English Japanese API Developer
Comments Comments Documentatlon Comments

The Solution: CrossDoc

e Comments stored in external locations [Saies ot]
o Easily accessible for all users
o Editable in code or in comment store

e Scales alongside teams
o Expands independently from code

e Breaks down cultural barriers
o Easily store and reference
comments in different
languages

English Japanese API Developer
Comments Comments Documentation Comments

Problem Visualized

e Documentation is buried and
too reliant on the codebase

e Jumbled comments with
excess information

[l

N =

[y
v W

el

=
~

N

The Logger class is responsible for providing output to the console

H#HOWH

API documentation

#

standard(message)

£

Logs “message” to stdout

3

usage (command=None)

Logs the usage message for the command that calls this method
alternatively, logs the usage message for the given ~command™
#
#

program(message)

4

Logs “message” to stdout prefixed with the program name

1.

fatal(message)

Logs “message” to stdout prefixed with "fatal” and kills program

LR

I+

Things to do
¥ Modify where fatal logs its message (stdout -> stderr)

I+ 3

* Add a warning lLogging method that prefixes messages with "warning”

v class Logger:

def standard(message):

Solution Visualized

e Provide a better way to
comment with CrossDoc!

The Logger class is responsible for providing output to the console

31 # <&> 20807c [No Set]
33v class Logger:

e Scalable, external storage,

19 # <& 20807c [TODO]

and enhanced COmment 26 # ¥ Modify where fatal logs its message (stdout -> stderr)
. oge 21 # * Add a warning Llogging method that prefixes messages with "warning"
functionalities. >

22v class Logger:

i

External comment storage

C rOSSDOG Key Intuitive comment editing

Functional text-editor plugins

Requirements o Aom

Emacs

Simple setup process

O
o Sublime
o Vim

©e B8

High Level Overview

MVC Architecture

O

(@)

(@)

Model: CrossDoc Repository
View: Text Editor Plugin Content
Controller: Command Line Program

Frameworks/Tools

(@)

(@)

O

Python setuptools
Text editor APIs
MediaWiki API

Model

Repository

/N

updates manipulates

CrossDoc J

View / \ I Controller

Text Editor Command |
Plugin Content Line Program

sSees uses

10

Command Line Program

e Provides API to interact with tool cross-doc --help

: : usage: cross-doc <command>
e Text editor agnostic

e Implements core functionality All CrossDoc commands:

Create comments
Read comments
Delete comments
Etc..

init
create-store

create-comment
generate-anchor
fetch-comment
delete-comment
update-comment
hide-comments

o O O O

11

Command Line Program

e Parser

o Reads input — User Inputﬂ[Parser }\
o Delegates to commands

Processed Input

e¢ Commands

o Implements CrossDoc functionality
Commands
e Logger [
o Provides concise output
o Outputs help text where necessary Generated Feedback

<«— Final Output~{ Logger]1—/

12

Text Editor Plugins

e CrossDoc userinterface
CrossDod

e Intuitive commands and hotkeys R

M CrossDoc: Insert Comment

e Support for multiple text editors 7 P

Atom
Emacs
Sublime
Vim

reate_config(config)

o O O O

CONFIG_NAME " initialized in this directory”

hash_length
string_to_hash = str(time.time()) ([Form(

final_hash hashlib.md5(string_to_hash.encode("utf-8")).hexc

CrossDoc Repository

e I|dentified by a custom config
file (cdoc-config.json)

Remote
Comment
Store

-
-
-
-
-

e Stores references to —— ”

comment stores K

Persistent meta- '

data storage

CrossDoc

Repository
Instance

Developer Computer

References
I

'
1
!
1
1

References
1

CrossDoc

Repository
Instance

Developer Computer

CrossDoc

Repository
Instance

Developer Computer

14

External Comment Storage

&20807¢ Logger Main i
31 # <& 20807c [No Set]

Contents [hide] 32 # The Logger class is responsible for providing output to the console
(UNoiSet 33v class Logger:
2 Documentation B
3 TODO
4 Spanish Description
e 15
No Set [edit] 20 # <&> 20807c [Documentation]
The Logger class is responsible for providing output to the console 21 # standard(message)
22 # Logs “message” to stdout
Documentation [edi] 4 =
24 # N,
standard(message) 24 usage (command=None)
25 # Logs the usage message for the command that calls this method
logs “message’ to stdout 26 # alternatively, logs the usage message for the given ~command”
27 #
usage(command=None)
28 # program(message)
logs the usage message for the command that calls this method 29 # Llogs "message” to stdout prefixed with the program name
alternatively, logs the usage message for the given ~command™ 30 #
31 # fatal(message)
program(message) 2 < N " 5 w - .
32 # Logs “message” to stdout prefixed with "fatal"” and kills program
logs “message” to stdout prefixed with the program name 33V class Logger:

fatal(message)

135
logs “message’ to stderr prefixed with fatal and kills program 19 # <&> 20807c [TODO]
26 # * Modify where fatal Logs its message (stdout -> stderr)
21 # * Add a warning logging method that prefixes messages with "warning"
TR0 ey 22V class Logger:
« Modify where fatal logs its message (stdout -> stderr) o

« Add a warning logging method that prefixes messages with "waming” 1 6

Text Editor Plugins I\

‘OQQV‘HQPY S u b | i m e

CrossDIoc

CrossDoc: Delete Comment

CrossDoc: Initialize Repository

CrossDoc: Insert Comment

CrossDoc: Update Comments

19:41 09/04/2018)15,27 10%

CrossDoc

Crossdoc Atom: CreateComment

Crossdoc Atom: DeleteComment

Crossdoc Atom: UpdateComment

Crossdoc Atom: InitializeRepository

L18 Git:master

Comment Categories

<&> 20807c [No Set]
The Logger class is yesponsible for providing output to the console

I I+

class Logger:

BT

<&> 20807c [Documentation]

standard(message)

<&> 20807c [TODO]
* Modify where fatal L094 its message (stdout -> stderr)

H#

Logs “message” to stdout

+:
I ¥ I

1

usage (command=None) * Add a warning logging method that prefixes messages with "warning”

Logs the usage messdge for the command that calls this method class Logger:

H#* #

alternatively, logs the usage message for the given ~command™

W

4

program(message)
Logs “message” to stdout prefixed with the program name

3

fatal (message)

3t

ETS

Logs “message” to stderr prefixed with fatal and kills program
* class Logger:

18

Development Challenges

e Managing multiple storage platforms
o Remote and local storage
o Internal platform validation

e Decoupling comments from version control

o Removing redundancy from commits
o Encapsulation of comment text

Local Stores]

?
\[Remote Stores]

20

Development Solutions

.« M . inle ot Lt
o Implementation of Wiki storage
o Seamless integration with command line tool [hide_comments]’

o Git Hooks (pre and post commit)

[show_comments } ===

21

System Tests

Testing of the CrossDoc platform will leverage the use of Python’s “unittest”
library

e Unit Testing
o Rigorous testing of CrossDoc command systems with all feasible inputs
o 124 Equivalence Partitions
o Function Coverage: 95%
o Branch Coverage: 100%

e Integration Testing

o Ensure functionality of the Text Editor Plugins to Command Line Program Chain
o Atom, Emacs, Sublime, and Vim will utilize testing classes in the CL Program 23

Usability Tests

Testing the CrossDoc application with its two main user groups

e Software Developers

o Main goal: Devs find it easy to create, push, and pull comments into the repository
o Should also feel like normal commenting with our extended systems

e Technical Writers
o Main goal: Non-programmers able to modify comment-base from Wiki location
o Testing the functionality of Remote Stores and Ease of Use for writers

24

Gantt Chart

Feb 2018 Mar 2018 Apr2018 May 2018
28 14 n 8 25 4 n 18 25 1] 15 22 28 8 <] 20 27
CROSSDOC
Assignments

Code Devefopment

| R&D Test Editor implementation

| Finalize Text Editor integrations

| Remote Comment Stores
| Git Hpks Implementation

| :] Finoi integrotion of All Systems

[| Testing

(

(

| Finoiize Documents

Now

26

Development I

2)

= ©

Milestones ®

Contents [hide]

Previously Completed (DR2):

No Set [edif]

The Logger class is responsible for providing output to the console

Documentation [edif]

e Command-Line Program
e Text-Editor Plugins

standard(message)

logs “message” to stdout

usage(command=None)

usage message for the command that calls this method
alternatively, logs the usage message for the given " command”

Newly Completed (DR3):

program(message)

logs “message’ to stdout prefixed with the program name

e Testing Plan

e Developed Wiki extension for
Remote Stores

e Began Foundation of Git-Hook
pre and post commit systems

fatal(message)

show_comments %

logs “message” to stderr prefixed with fatal and kills program

TODO [edi]

« Modify where fatal logs its message (stdout -> stderr)
« Add a wamning logging method that prefixes messages with "warning"

Problem & Solution Summary

The Logger class is responsible for providing output to the console

I

£

API documentation

#

standard(message)

e
H

Llogs “message” to stdout <&> 20807c [No Set]

The Logger class is responsible for providing output to the console

I
4

£

usage (command=None)

class Logger:
Llogs the usage message for the command that calls this method

£ 3

alternatively, Llogs the usage message for the given ~command”

I

program(message)

21 # Llogs “message” to stdout prefixed with the program name

N
~
4

fatal(message)

I

£3

Logs “message” to stdout prefixed with "fatal"” and kills program

#

3

Things to do 19 # <&> 20807c [T0ODO]

¥ Modify where fatal logs its message (stdout -> stderr) # * Modify where fatal lLogs its message (stdout -> stderr)
* Add a warning Logging method that prefixes messages with "warning” 21 # * Add a warning logging method that prefixes messages with "warning”
29V class Logger: 22v class Logger:

v def standard(message):

"""logs a message to the user (non-ending)"""

print(message)
5 return

Without CrossDoc

With CrossDoc 29

In Conclusion

e Prototypes
o Text Editor Plugins: Atom, Emacs, Sublime, Vim
o Comment Categories within Editors
o Remote Stores integration through Wiki
e Testing Plan
o Unit Testing of CrossDoc core commands

o Integration Testing of Chain between TE Plugins and CrossDoc
o Usability Testing with Software Developers and Technical Writers

e Our Path Ahead

o Finalize Git Hooks implementation
o Write and execute tests according to Testing Plan
o Creation of Easy to Use Documentation for End-Users

30

Questions/Comments

